МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «КРАСНОБОРСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

РАССМОТРЕНО И ПРИНЯТО на педагогическом совете Протокол №1 от 26.08.2021

УТВЕРЖДЕНО приказом директора МКОУ «Красноборская СОШ» № 145 -од от 31.08.2021

РАБОЧАЯ ПРОГРАММА

по курсу внеурочной деятельности

«Решение разноуровневых задач по физике»

(общеинтеллектуальное направление)

11 КЛАСС

Количество часов: 34 часа

Программа по подготовке к ЕГЭ по физике для 11 класса составлена в соответствии с: Федеральным законом об образовании в Российской Федерации (от $29.12.2012 \text{ N } 273-\Phi 3 \text{ (ред. от } 29.07.2017)$),

требованиями Федерального государственного образовательного стандарта;

примерной программы учебного курса (Шаталина А.В., Рабочие программы, Физика, 10-11 классы. – М.: Просвещение, 2017.),

комплекта учебников Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский / Под ред. Н.А.Парфентьевой, Физика. 11 класс. Базовый уровень . – М.: Просвещение, 2017.).

1. Планируемые результаты освоения курса внеурочной деятельности

Рабочая программа по физике для 11 класса составлена на основе авторской программы курса по выбору учебного курса (Шаталина А.В., Рабочие программы, Физика, 10-11 классы. – М.: Просвещение, 2017.),

Курс рассчитан на учащихся 11 классов и предполагает совершенствование подготовки школьников по освоению основных разделов физики.

Основные цели курса:

- развитие интереса к физике и решению физических задач;
- совершенствование полученных в основном курсе знаний и умений;
- формирование представлений о постановке, классификации, приемах и методах решения школьных физических задач.

Программа курса согласована с требованиями государственного образовательного стандарта и содержанием основных программ курса физики общеобразовательной школы. Она ориентирует учителя на дальнейшее совершенствование уже усвоенных учащимися знаний и умений. Знакомит школьников с минимальными сведениями о понятии «задача», дает представление о значении задач в жизни, науке, технике, знакомит с различными сторонами работы с задачами. В частности, они должны знать основные приемы составления задач, уметь классифицировать задачу по трем-четырем основаниям. В первом разделе при решении задач особое внимание уделяется последовательности действий, анализу физического явления, проговариванию вслух решения, анализу полученного ответа. Если в начале раздела для иллюстрации используются задачи из механики, молекулярной физики, электродинамики, то в дальнейшем решаются задачи из разделов курса физики 11 класса.

При повторении обобщаются, систематизируются как теоретический материал, так и приемы решения задач, принимаются во внимание цели повторения при подготовке к единому государственному экзамену.

Особое внимание уделяется задачам, связанным с профессиональными интересами школьников, а также задачам межпредметного содержания.

При изучении возможны различные формы занятий: рассказ и беседа учителя, подробное объяснение примеров решения задач, коллективная постановка экспериментальных задач, индивидуальная и коллективная работа по составлению задач, конкурс на составление лучшей задачи, знакомство с различными задачниками и т. д. В результате школьники должны уметь классифицировать предложенную задачу, составлять простейшие задачи, последовательно выполнять и проговаривать этапы решения задач средней сложности.

При решении задач по механике, молекулярной физике, электродинамике главное внимание обращается на формирование умений решать задачи, на накопление опыта решения задач различной трудности. Развивается самая общая точка зрения на решение задачи как на описание того или иного физического явления физическими законами. Содержание тем подобрано так, чтобы формировать при решении задач основные методы данной физической теории.

Содержание программных тем обычно состоит из трех компонентов. Во-первых, в ней определены задачи по содержательному признаку; во-вторых, выделены характерные задачи или задачи на отдельные приемы; в-третьих, даны указания по организации определенной деятельности с задачами. Задачи учитель подбирает исходя из конкретных возможностей учащихся. Рекомендуется, использовать задачники из предлагаемого списка литературы, а в необходимых случаях школьные задачники.

На занятиях применяются коллективные и индивидуальные формы работы: постановка, решение и обсуждение решения задач, подготовка к олимпиаде, подбор и составление задач на тему и т. д. Предполагается также выполнение домашних заданий по решению задач. В итоге школьники могут выйти на теоретический уровень решения задач: решение по определенному плану, владение основными приемами решения, осознание деятельности по решению задачи, самоконтроль и самооценка, моделирование физических явлений и т.д.

Требования к уровню подготовки учащихся

І. При решении задач учащиеся должны уметь:

- классифицировать предложенную задачу,
- анализировать физическое явление,
- последовательно выполнять и проговаривать этапы решения задач,
- анализировать полученный ответ,
- составлять простейшие задачи,
- решать задачи средней трудности,
- решать комбинированные задачи,
- владеть различными методами решения задач: аналитическим, графическим, экспериментальным и т.д.;
- владеть методами самоконтроля и самооценки.

Механические явления

Научиться распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);

- описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения

скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Молекулярная физика

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей

среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;

- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электродинамика

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний о электромагнитных явлениях
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления припоследовательномипараллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон

Джоуля-Ленца и др.);

- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовая физика и элементы астрофизики

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.
- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира;
- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.
- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
- различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой; различать гипотезы о происхождении Солнечной системы

В результате у выпускников будут сформированы личностные, регулятивные, познавательные и коммуникативные универсальные учебные действия.

ſ	No	Формируемые	11 класс
	712	Формирусмыс	11 KJacc

	УУД	
1	Личностные УУД	 осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов; готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
2	Метапредметные УУД	 ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях; организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели; сопоставлять полученный результат деятельности с поставленной заранее целью.
3	Познавательные УУД	 искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи; критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках; выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения; менять и удерживать разные позиции в познавательной деятельности.
4	Коммуникативные УУД	 развернуто, логично и точно излагать свою точку зрения использованием адекватных (устных и письменных) языковых средств;

2. Содержание курса внеурочной деятельности

Механика

Равномерное прямолинейное движение, равноускоренное прямолинейное движение, движение по окружности. Законы Ньютона, закон всемирного тяготения, закон Гука, сила трения. Закон сохранения импульса, кинетическая и потенциальные энергии, работа и мощность силы, закон сохранения механической энергии. Условие равновесия твердого тела, закон Паскаля, сила Архимеда, математический и пружинный маятники, механические волны, звук.

Молекулярная физика

Связь между давлением и средней кинетической энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева — Клапейрона, изопроцессы. Работа в термодинамике, первый закон термодинамики, КПД тепловой машины. Относительная влажность воздуха, количество теплоты.

Электродинамика

Принцип суперпозиции электрических полей, магнитное поле проводника с током, сила Ампера, сила Лоренца, правило Ленца. Закон сохранения электрического заряда, закон Кулона, конденсатор, сила тока, закон Ома для участка цепи, последовательное и параллельное соединение проводников, работа и мощность тока, закон Джоуля — Ленца. Поток вектора магнитной индукции, закон электромагнитной индукции Фарадея, индуктивность, энергия магнитного поля катушки с током, колебательный контур.

Квантовая физика и элементы астрофизики

Планетарная модель атома. Нуклонная модель ядра. Ядерные реакции. Фотоны, линейчатые спектры, закон радиоактивного распада. Элементы астрофизики: Солнечнаясистема, звезды, галактики

3. Тематическое планирование

№	Раздел	Количество			
		часов			
1	Механика	11			
2	Молекулярная физика	9			
3	Электродинамика	9			
4	Оптика и Квантовая физика, элементы астрофизики	4			
Итоговая работа 1 час					
ИТОГО 34 часа					